1.
Consider a source computer(S) transmitting a file of size 106 bits to a destination computer(D)over a network of two routers (R1 and R2) and three links(L1, L2, and L3). L1connects S to R1; L2 connects R1 to R2; and L3 connects R2 to D.Let each link be of length 100 km. Assume signals travel over each link at a speed of 108 meters per second.Assume that the link bandwidth on each link is 1Mbps. Let the file be broken down into 1000 packets each of size 1000 bits. Find the total sum of transmission and propagation delays in transmitting the file from S to D?
2.
Consider the same data as given in previous question. After the update in the previous question, the link N1-N2 goes down. N2 will reflect this change immediately in its distance vector as cost, infinite. After the NEXT ROUND of update, what will be cost to N1 in the distance vector of N3?
3.
One of the header fields in an IP datagram is the Time to Live(TTL)field.Which of the following statements best explains the need for this field?
4.
Consider the data given in above question. Suppose the weights of all unused links in the previous question are changed to 2 and the distance vector algorithm is used again until all routing tables stabilize. How many links will now remain unused?
5.
For which one of the following reasons does Internet Protocol (IP) use the timeto- live (TTL) field in the IP datagram header
6.
Which one of the following is TRUE about interior Gateway routing protocols - Routing Information Protocol (RIP) and Open Shortest Path First (OSPF)
7.
Every host in an IPv4 network has a 1-second resolution real-time clock with battery backup. Each host needs to generate up to 1000 unique identifiers per second. Assume that each host has a globally unique IPv4 address. Design a 50-bit globally unique ID for this purpose. After what period (in seconds) will the identifiers generated by a host wrap around?
8.
An IP router with a Maximum Transmission Unit (MTU) of 1500 bytes has received an IP packet of size 4404 bytes with an IP header of length 20 bytes. The values of the relevant fields in the header of the third IP fragment generated by the router for this packet are
9.
Two computers C1 and C2 are configured as follows. C1 has IP address 203.197.2.53 and netmask 255.255.128.0. C2 has IP address 203.197.75.201 and netmask 255.255.192.0. which one of the following statements is true?
10.
Station A needs to send a message consisting of 9 packets to Station B using a sliding window (window size 3) and go-back-n error control strategy. All packets are ready and immediately available for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever get lost), then what is the number of packets that A will transmit for sending the message to B?