1.
Lipid are found in acid insoluble fraction during the analysis of chemical composition of tissues. Given the reason
2.
9uyCLPEQFyL14eLj36Nk1PSOVDJekZZjqPdcsrwKWwXPZFD1lLcDw74Mxz/vvOVjfc7/8FBCravCQTy2tLC5cPMPMJaN9VxQwoHJysq5du7Jp08YZM77t2rWzu7ubvb2doyPZKezh4fHpp5+uXLkyKipKKpVyaf4roBbQEo3CYFAlJDz8/ItR3t5ezi5OQ4cNmvvLT2PGft6seRM7e9suXTtnZqXBkqK0SepJpZoAp0YXxAHed3C027x5I4lXuNjC440DlBIb+3jK15M8PT1cXJ379O118tQxdBAECd3AWBiAH3ELCRGBOgzt33473dXV1dfXe+nSxRkZadwjzQU6zPPWrF0xfPjQ1h+09PL2Qr937tJxwcJ5V65ceBwbnZWVcvvOtUOH9s779edFi34b/fkI2AcLFszDLIGrU0mDjXw6+v6S+fPnOTs7bdq8XqNVsudp0Q6scbjYrwSkxoHWhb6yU7QxuB2ujr6s/z9lz/P++w8qcJAVA5RTIs1p176Nq5uTTC6BjLJ1Z4CL+gwwg1YrFPLc3OzY2Ednzpw6e/Y0cPbs2QsXLiQmJsrl7HGqVwSVYwiuRqkS/zLvJwdH+549e5y/cCYlNVEiyUlOSYiJuQf2txZYNW5SX6cjv/GitkZmQQ5wcQrAo9Uqt2zdgLnCuXNnEPL6asbjX4COyMhMuXTpwoBP+mGsDa9SsX//3mIxeYIPvcMan/YR/pM3WCDFkycJn332qZOTE6yHAwf2ZWeTWQL6NCkpcdq0r1q0bIJJnshGKLIRTP926unTJx49epAvE6tUckgI+pPuTpRjeBBLsiEh165fvnv35lPyjuhSASqcuG+ymzM5+QnmQyGhQalpT2COoOasQV7HEAHXG+keh/H5OeZS6ocusLgvBZ7333MwgaOMCbHTpaUlNW3WuGu3j2D4U97/P3YxItCxQY8BAJrHUPS3o1cH/RlKp1c9fhzl6+dVr37thw9joCTMQoQlCA+GnC5dOlpZW2Kmz0YpVii9o78qQE+11aqHVw6vCB6Bmr2B6vH4Z4DVwXEg9Kys9IMH9/v4eNnYiIKDy9eqVev48WMymRTdp9GQTV/oRPivX78aEhJsa2tjZWVx8+b1rKwMDM9TpkyuUqVyQIC/g4OdrZ0tBn5YytHRUZgWKJXkvZUqFfmKJ7oRYoJCdfRFYTgow6pVKgVd6iklIMKGZoELaZw+fTqEtlHjevQ9cdAvchX3QiK+BpAzk2q4TAVYODz/NXOe999zFAoK9Ic8V/I4NqZBw7pfjhnFLGgmqVAjGvcZQK6QFoDq4ZR6yCDBAhHCTmncV4FBT+wUGERXr13AvH7/gT9RHzZTpltCkTch+qSkhLr16mBgkEjyWHHMZXWAy6oE2xCGZ/0G9TByaLVkKzcpg0dxgTQ8DpC7RqNKTk4aOXJ48+bNfHy8PT3dfX19+vfvu2zZ4j17dh07duTzz0d5e3uyH2abNWs6ceL4ypUreni4Ozraw61Xr267dm327NmNCYFEIkans94H1xMyo8M3DvQnPUVvk2kfhITJI1edkgbqSfWFU6Xc3NzefXoJRYKFi+bDdqHVfq2qIgd6vyjCYPz6KbNvaOYolCgCF/slwPP+ew4qK6BIoqjE3k9Pat6iSZWISkpVPlQIEsOMdy7230DZlfPQuSRnaDAPzfkVgaQ0H+2Ro/v8A7yuXb+EyiIYgRru7VRkuUZv0J47f8rWTrR06WJ6F39VgPmZu2v3doHQqkHDenTJmOzx+Jeb4vGaQJujeVkvsC4Qi/NSU59s3bbp5zmz2rRt5e7h4ujk4Orm7O7uCjPfxKQcDkAgsLa1tQ0M9J8wYfzcuT/v2LHt/v17mZkZKpUKfc1yZRkW+rlAuJTdCLHSU04MWH1KHIz0cWg00Cnij46+17JVU18/b9wmGgc3+Dq1xe3DJKJjHplCYa5DDCf6Hgg2M2bhXOyXAM/77zmoCkF1iImk06u0WmX3Hp2trC3OnD0B3WFKxUV9EYpehJ9mRbSOhYBejf7/DDIYkQ375y+cFNlYnb9wGoJL6lpIJawgg0Gr0Sp2797RtGmTuLhYhHDJC6e9iJaRkdGqVUszc9Odu7bTNVYuBy4ej2IApem/fkehrk4izcmX5T14EHX8xJGQ0KBylO5x1K1bp337dgsWzD9x4hiOyMgLWVkZ+fkShUKG+RkRQdrXyA2An2RLHhmB0U++ZwkhIY+PUAsX0VhkBlaZEgcqggP1wkFfzGlAze9F3XJzd/b19R4+fLhYLH692uKW9Zg6YFZ06NCB9u3bduzYATLfufNH06dPY99sQLNxcV8CPO+XKUDyCv7ct8vNw/GDti2oOpFFHKKyOvWTpIQlSxdWr1GlQsUwHNWqV2nbrtX83+ZmZ6frdDDHVFBMCBeXEVU/4+lzYPoJz3MuwuEpmgmcGzeuWVtboWj2CmUMUYgCOqDsjZEAVozuSVKcUCj4/fddqDMmHrjEDrbmu379Wjc3Vz8/v9y8XEYcLH8exQf0HQMbYuEy6kGXKZXyevVqW1paikTCpUuXRkdHx8fHp6amSCRitVqFydzLmQtENkCnRj/1vAMovDPyQAmmqsEhQfYOtsOGD8IMG6GkjagWoAXgN7YD89OWgfQSlochr4XNo9UsXrywU6dOYWFhFStWCA4O9vf3t7KyEggFNrYCa4E15lUhoSEVK4UtW77oxq3rRCPIDg6DjjxHRkYiZM76CDCWyPN+mUN2bnpAkL+bh1tOXhbEQiyVRF66/PGAvr5+Pu4ebh6eroFB/uWDA7x9PB2d7OnTWz6DBg+8ePHs7ds38vPzITpGMTLy+3NgEVhMY2QAIewqXHYK5ORkdevW2c3d5fqNy5B4NmnFQckEfg30JzMrTSC0HjpskFiSjWGAKQYdFfTx8bEfftjO3Nzs0qVLpLDCVU7kzzw8igOs+9DazAMXMy2VSsHepYOBvEWL5gcO7JdKpXK53BgT4NK/7yAPkRjUGo3i4KG9LVu1cHC0q1uv1oMHD9gaJloDusNkFafMWGFrQXDv3btz7NiRMWO+CAwMwOHk5AjSr1evXv369evWrdu+fftmzZpNnTpl9k8/tGzVtE7dmg0a1nF1c3ZxdfT19+3Srcu5C2eVagX51CJ5nQYpCMMJqVIh4Od5v8xBZ9D8tmieUCT85de5knzx+IkTfP187e1tu/foOmfO7G3btxw/cfTkyWN79uxcsODX6d9O6927h4enu5eXe0hI+a++mpySkgxNZwuvbMn1X8DkrCg7IJC5LBASCfo+c+ZkSGhQ3Xq1L1++yPbtQW1wER640B+ZTNypc8eQ0MDk5ASyAkBfzwuW+f7773r16uni4jRq1CiZjLx+mZXCQKvA480DbYt2hod1LnNhy48fP87Dw71u3dozZkxPS0tVKhWMdFj8f7IS3lNgzqqCGCsU+fHxj0ePHmEtsGrQoP7cuXNkMhhPbKrKNAgSS5rwypVL33///bhx42rUqObu7u7gYDdgQP9vv50+Y8a3hw8fSklJSUtLS0pKysjIgF8qFUskuWlpycnJiUlJCZs2rf9m+rRJX00KqxgWEhY8fuK4C5HnyY/NhaqHCrHGRwhcnvfLHDD7y8xKD6sYCuug9QetnFycLK0sZ8788XHsQ4kkT6EgX/sDpUJeZTIpQmJjH8H6mDv3Z3NzU5gezZo1mT9/HrQYM1AYLlymz4IpOVyImhFG4cMlJo7wAMhEqZStWLkE04s6dWvv+X0HW9VlLwJirloj/3HmdwKhxcXIs2Qk0GuhP23atHF0tA8LC121agVUApZU0fxpRXgUF9CbRisSrZ2YmNinTy8bG5uPPup48eL57OxMulJHLiEa4qB3mACUGUD4IeTkO8CYCSUnP1m/fq2trQjj4gcffPD48UO2dY3FiYq6O3To4Nq1a9rD/rK16du39++/7/njjz1PniTk5mbTT2ApIdWsqYkuEW0iv9ghLZ0T66RS8oWk7Jyss+fPNGvR1N7BrladmqvWrEQSqmLccItT5ud5v8yByKPBcO36VTNzM0trSzdP5+u3rubkZDPeLLLxgIgXxAomCQw3iURy69aNTwb2g9ni4urSuUsHqvgg5ectOJKMAn5kZRQ1ZMROWRx4GHFAcOHk5+f9/sdOK2srP3+vESOH3Lh5BVxBf80j6/tw161fbWZu0rNX163bNlWqVMnNzcXa2rJly+YPH8bk50tgPbGcjXjulMebBe1h0q3oRKBfv34CgcDX1/f8+bMwGiA44DVYBuh0Fo31PvOXBYBtcfvwQNJpUxnkcvmWrRsrVgqFBgWHBE+f/jXmSIjYu0/3ChVD7B1sLS0t/AN8rl67lJKSJJfnoxkZs6MlGXezNoSGkuyoeCuVRAHhBzDf0uo1Ko0yNv7xydMnRDYiLx/Pvfv24hI6iFShMBXA836ZAzQPR3JqCoTPxLxcx87tEhIfgvQZ4wNMPpigkPgc+5PN2lnZaWfOnqxQMdjdw/3M2RNUcJ/XZKRFZGOqzMzMqKioO3fuZGdn4xQSzOLQ7AnojnsVslKpZCdPHQ0NC/bwdPHy9gyvEr5l6/pLl89fuXoRyjB12ldm5uUEQoGXNybBbtWqRZw6dSI9PZVuCCGLCciZlciUBGD14VEcQPMSWaHm5MyZM0UiUVhYSHR0FGMr9DAORGHdASAJ6x2WvCwAN4tWYi5rLoVSevfuzSZNG4Ll7ezt6tWvHRxS3sZWGBISPHXalPv37z54GAVFYHQPjaSpQdmk3QBjPmhP5kcgOyU9AZ2CYj0ln1RSqhVr16+xsRUNHjI4NzfXGBMuNAV143m/zIH+yq/7cfaPFtYW5pZmEI52HVqfP3+OrsRi7sk+uk+Uls4lCUGzhJAc+oytctfubbBZZs36XqnKN141olDI9Gq1euWq5f369Q0MDPT39+3Vq+fvf+yWSsmH0enCPTE9qASTsgrIR3/Jkujdu7cXLJw/duzYWrVqubu7enp5BAT6eHp5Ojo5ki9vmJpOnDRhy5bNKSnkq1UohVIMyuSGKAZaER7FCCIe9NeXyEvnIyIiGjduHBV1jwoMOpd0KO0NIjxFwSUufXjjdUMzEJe8QYGQMl3NR8toQetPnsSFhgVBmC2tyGvm7OxE9PPamHCzj/Hi4JqR/QZgbEaWMyNunCJbeJjLrhaQtxyiTGhTQa44Z/iIYZ6eHqtWrUQ+hcMGF5Pn/TIH9tSut693/Yb19vy+a9CQz4Q2wlq1amzdulmpJMaa8aCSCrkCqFTh3KDWkQ8Dyywszfr375ubl0nyex4IgaTqhwz9FGa7nb2Nt4+HpZWpUGQdViF09ZrlOp2aruATeX0OKAliLZVKcnJyLl++vGnTpkWLF6zfsHr3nh2bN6+vW7c2eD89PQ3TWy4Bj5IAZRDIhObpU3WXrh1sbUUYiRkfvSsAHYMKuZNiAGNpuER5CHFjHNCnpSdN+Xpi164fWVlbRlStPO2brzw83czNzRs2bDBp0sScnCymOGhc9nMIPGzYQFUZkCdOac5/1zsC0Du1pcg0Ojb2UcuWLcLDK+fnS5AKd2xMxPN+mYPhqXb4qMEiW+uZs3+QKaSp6SnjJ46ztLTw8/NZunQxZpeUkclBRZBIIUmFZESxiYkH9gePf/7FSI1WQVn+OcDe186ZO8vB0bZKRPiBg3/ev3/nzt0bO3dt9fMnlrtcLtHpX8z7DFRGyewjPz8/Ny8rX5YnV0gUCmn37l3NzEyysjDY8Chh6MmGLq1OJ7e1E40aNUIsFnMX3hHAeIGAFWXPf2LSV4ZSSRbiIckaDXkYJTs746NO7Z1dHIUiqw/atIyJuZeVnXbv3u05c34SCgXOzs6VK1c+cGAfBgmkLVoZRvRsWEVucHGVBT4HJAK54xK9NbJS1K9fH0tLS4VChquYhGNUwAE/z/tlDnqDJqxiqKOTQ8KTWJ0BJK7LzcvZtGmDl5eni4tL+fLld+7cnpSUqNYowO+QnsIVWmJEsB9aHz2OtrQymzBxLE65TJ+BQSLNBeNDxNevX61UyjEMYHqrUEonTR4nEFqtW7+q4KkW5g8XvQggsiiFAX5q4kDQMfZAnNV9+/Y2tzC5cPEMF5tHCQG9w3h/0eJfrAUWP/0064U0VJrB5Jn5mbAx/xsEZBfZwoZJS0v+5Zef/AP8nZwcgoICjh8/ihDymxa0T68Vi3MPHz7YrFkToVDo6eneoEF9sD9sf7Qx/W2cvamQ1JA2O8kTmRsrXxRaaDPdvImriIu04H1TUxO5PL8wkEvI836Zw+WrkZ7ebm3bt1aqZTqDBtQPUYFFcOzYkfHjx1WuXNHV1aVGjeo/zvx+8ZLfzpw9mZmZDgaGpEHgklMSNmxcE16loqOT/Z97d0N9uEyfgf6XeT/ZO9gsWDgP2dKVSrJABJpITX1SJaKSq5szeUXtP/A+wIS7qIhD7PV6zajRQ62szbfv2MAi8ygpkP4w6DHqfztjioOj/fbtW6iEvJOg0vUCDn1N0FwNCoX80KH9bdu2AuOXDw6cM+fn6Oj7SqUCoyZpQO7QqdXKlJSkH374bvjwYRUrhrm7u/br13vBwt+OHj2k05HP0TDWZi4bsQCupCIA6TPeBzBmYETp0qWTnZ2tTCaFKmEqgDjQKrg875c5jJ84xkpguW7DapVGDt6HnOCAUKlUClD82bOnFy1aULlyJXcPFxB0tepVO3XqAKuhL0Gf9h9+4OPrZW5h9tuCefmyPFA5JJzLtxAZmalt27U2NTPJyc1kFjyiICYOsP+48V9YWJqfPXcSl7gERcAEuiiQlho6RG6nTpuEOfKqNYu42DxKDugRdOiXY4ZbWlnM+3UuG6HfIRDRKl6gBD1UpnJ4RStry6HDBh0/cTg/XwpGRlsZ919SBdHBMIcnOzsTB8yvVq2b29qJMF0Or1Lp66mTMzJSkJ3xsWe23/qFwD2xTW2IiTxPnDgWGOg/cOAAqDYCUSJdBSIxed4vc+jZq6eZZbn7MXf1MPb1GvI7EJ1v4oAI5udLpFJxVNS9P/7c1b1HZz9/L2uBlUAgEIkwDRXAX616lX37/xBLssmGM7LO87z+ZGaltWrdrGGjOlqtgpiBMOzJrIB8kx3HteuX7B1E30yfYiCfV3weTBmMC6/ExX/qRfCUKeMxYq1dv4TG5VGSYOs8y1csEAjNMTWEEcpdeEfABIwBIlf09I0Agty6dSuhCCpjuWz5wqTkOJWaPE8OMF5m0Yx6B/McLuqiUsnj4h5evXZp/IQvLSwtwP5Vq1WpWbNmz549MzIykJDVFmA5FAVRF3KQS3l5OZUqVXR3d4uMvEBnFRgz/rpNnvffe9B1eSpmOp32SVJc4yb1HZ1slcp8ZmUAlFnZwYSGiKZKrcjISE1IjIu6f/vGzSuw0C9cPBMXF5eckqxWqwv5mCR5Dvfu34moEf7tD9+otQqMKMaFVHhQgcexD21sbT4e0IdK+YthlE4AXkwYdGRbnPbraWOtRJZbd67krvEoMUCiyCgulmQJhFaffzFCIiXr0eAW9B0D3YjIxX6/gZuNj4/D7bMDI2JWVkaXLl1EIlFERMT+/fth5tOWeWFzcEqETNg5bVuiKjk52ddvXO/du3dQUJCnl4ednW1gkH9IaNC3M6Y+SYp/kpSQnJKQmZWanZOuUstp4+u0OpVSJUtLS4bahlUItbEVrVy5EtrKZVwEPO+/59AbyKNVTKhgMt++cxUGe3iVimo1+bmV2OPE6Hjh4ixSIRzjgoaMAhqZVvdSuycvX71UPixo0fKFOr1aR3+SYqXTmabhwYNoB0e7SZPH/QvvFwXSMs0wPNWMnTDCSmS+biO/zlPCQI8aCrR0tqft/3GvChWD79y9CosVvUQInywuE4n6i8red2g07CtGZFV927YtLVo0t7Gx6dOnT2JiokJB1ljYbpyXBNUUMvHVaDSpqanI5MyZE+PGfznw0wGNmzR0cXXyD/D18/dFszdr3rBX7x6zZ89ct27NihXL5v8297vvp9epU8M/wEcgFPz88yzM3blMnwXP++85CshyCse8kKj70bdr1qpWrXq4QimFlsIAZxLGLj8Hot3kInsZOrT6pZj66vUrIRWDv5s1g3xXmm4DRekQZWSk1WogndYC67379rws7xMuYbyvGzbiU2uR6ZXrZ7lrPEoIVGZ0BvL6PA0mgp5ebj17dc3PB8UQioOtWhiN/X//wUgfQnrlyqXQ0ODg4KBZs2alpJB1eaZfAIv5MjDGZ1qDHLRaZXZ2BqYR169f2bBx3dq1q1etXj5m7OeVw8MEAoGjo4OLi4uzszN1nJo3bzZ//rxNmzfm5eVQBXoBeN5/zwHKpuYD8UNXExIfNmpc38/fW62R03UewsoAjfsMWBi9hANSCGV+4bTgeTxJTmzUrOFH3TqqtcrCzQWkCPrP0KpVC1MzU4kk54X7ef4OtiSpxwj0VP/Jp/3MLEwk0mzuGo+SA+0WSIVBoZAOGz7ExlbYu093zAgxyUMvIwIjLBb5vQez9MH+zZs39fX1PXToQF4eeTsCWdmkP1ZB+BmVvwwQ39h6nPKQQYWs5Gg0SqVSLpfny+SStPSku3dvRkZejKS4cOHipUvwX4yJuS+R5OXLpKgPVd4XgOf99x7keT/8gwPpUamknTp3sHcQqVQyYshTWwSyxaIWBdNZ5hLjjj5KRU7+H7R6dffe3Tx93RWqfLI4T7NgdYiJiQ4JCXZ0stXr1XrDS+VGGR9Eos/OyfqgbWsrgZVKLeeu8SghEB4iaxfkhaywHh4+jK5Tt7bIRjj682F54mzMA9i7ZbjYZQDM3n/06AHs7aZNm4jFuYyvcYko2D+o2D8BCZEE+sYSwkUIwPKkzQ4/U0kNtBL/iE8Dj1ZDP2uDPIwVeCF43n/PQV9kDzHizgwG1ejRw6wFFteuXyKaS9+R+0L5KGR85kJqEe2lDBYY5v0H9jWzMotLeEReFUJAftSFoTJ27BhLS4slSxcYDGQtmEvwr6DbOMmre06fOeXj5/PpoE8V5OOiPEoe6FPauTB1VYeP7K9Tt4atnejjAX2TUxJh6SL8JQXmvQAIWjt06BALC/PExHgwMpFcokScpf9PWvYvYKngoY1M8gHQ5oXhUGqcEeMJebPsEc4is1TslOT1N/C8/54DAsP5CCAGukWL59k72Mz/bQ41UqC1cF4kHDSMXaER/iHa3wDxW7lmqb2j/fwF8/T02ylUDfSYflaqVLFGjerk5ezkN8AX5wbhZgWR8ihIPZ/qtmzdYGFpfvLUCcgyi8mjdABdRHYfnjl7evr0b2D1d+/eVSIR03D0O30NDtdjYCvCU7RXOXAXOIvYoKdvhSLTvCK9TGmOyAtklfynDjiQBJUWoIaGRo0ampqZaHVKA/0aMAmlzPsv/PvyII3F7vyvrOD5K1sWbIzG/Mzzd/C8X+YQ8/COl49HzVoRWq0Kp5DPl1u/eXkYMrNSg8oHhFUIzc3LLCCqDurXzP3lJ6HQeufO7VQNqCb/DYz0mV0DD6YjNEQvV0iGDvssrELwkycJmM1ysXmUJmg0mszMzOHDh4tEosaNG586dQqdrjMoKe8RVrp1+3p0zA0wPOMj1rnwMFoEdOSb+DqtVkk/5kzEAHmySywm0lE/hhkljAk6DS0VQGW0WnXDRvVNzcpdjDyDCjIGZveIG8SNkFYoNeB5v8xBrZE1aFjbwdHu5MnjUKRiMJuIwE+dOtnS2mLEiCFEjfXqk6eOurm7tm7dKiEhjqwu/cO2NoQjMTyU7onaUJ1R5eSm16tf49f5c+jC8RuuLo83AvQUeg3U/8EHH9jb2/v6+o4YMTQlJR5UjnEcvfbDjzNq1grXaMhbB1j/cin/on5QJNk5Rm0FSpxkMCACCiAE7EnDEZ08j4p0JHGpAEYj7Zkzp2ztbMeN/0JDn1hk98hu7Z8EvqTA836ZA1TpwIE/hSLr/v37KRTs4e83qz9EB9LTU2vWqhEWFhoZeSE3N7t7j86eXh579/6uVMqZ3gJc9CKAhkBbcIk8GkaBQJ1Ou3vPtho1q16/EYkRgcXkUdrA+gt9l5aWtm3bthYtWtjaitq2bfnn3t/F4hxIXf+P+1hamkdHR4H6qbUOQkd0MiqQhWqtFnJy9Oihgwf3HTy0/9y5sxjjcRUSgYuxsY8OHT64f/+fhw8fPHLkEEaX0mPsA6g/5FalUlSrVrVCxbAHD6JQZ4QwOwZXcZ/wcLFLAXjeL3OARIJ8J0wYFxDgf/78WZxCtbhrbwjM2Dl58oSVlWXbtm0++WSAg6PttzOmyWQS6ALUgFLEC9SAhZPEVGdYzLVr1wQE+n0ysI+KfOaF5/1SCvQUIzj0nVKpjI2NnTZtalhYsJ+/7/ARg+bMnd2wYX0LC4uOH3WIjX2oN2hgskMYkYjxPlJlZqYvWbIwvEolDw/30LDQgwf309//YTVrb9y82qnzh94+nv7+fhMnjktJSUaJ4FJWdIlDoyETU9zCsWPHhCJBmzatHj16ZJRheNhVLnYpAM/7ZQ7QT7iPHz/28/Nt2Kh+Skpiwcs9kPWSQP6Qcnig/DNmzBAIrEUiUYuWTVJSn0DJMT1nCsCq8RyQkHE9AJMf/gsXLkREhNvY2mzbvgH6xQYFLjaPUgZj98EDF1Z5ZGRkeJWKtvY2Xt4e9va2ZmbmNrbCSZPHky+10R9+6MFN73Q6TVp6Mq5aWllYWJq3aNEkLu6hgb7WSaWS3bgVGRDkGRDog2EDfAouLT0GNG6X1ocI7YoVy4RCQd26dXNycliDQGJxCeBilwLwvF9GAVlctGiBja3o4wF98mV5XOgbAkScyfq9e/dq1aplYmLi6OQYdf+2RqOEdrMIAIv8HGAYgTeYtvzxxx8RERG2tqLJX42XyXLA+9AjLh6PUgbW45SRycAMjwFWvUYTF/fg6PG9Do5CiEG5cmYmpuWcnB127tqu06twEFonaz7cp0IgHqtWLxMIrZ1dHARCq4iqlfPEWchVb1BrddJRnw8cMnSAWqOAhJASS40sFJDvKeImiF8qFY8YMcza2josLCw3N1dLH4mHPEOwadxSAZ73yxwoJ0MOyRL88OFDnZwcYfXfvXsHcsl+K6NrKWRayqw2uEyTmft3sJhwucjw4ijQP0lO6NGru1+Ab936dVzdnEPDgr+d8XXkpbPkVy+y0Y0YeoiO4phLKkam/xq5XHLnzs3f/9jl6eVeuXKlBQsW5Oblos7/VAEepQfG4Rwe+tQeek0dHX23Vu3qYHxymJQzNS3n7u6+Y8c2lZp811OPOOS7OvSNrQbNvF9mi4TWK1YudnN3sRZYYBhQa2QF5MdezcTJI8ZPHKLXK+hjISikdBoBBbD0Bw0eZGtnU7ValQ0bV0ukOSq1DENhUVUCjG319sHzfpkD6JVumCPuo0cPvvjiC2trqzp1ap8+fYo9ZokD2gihpCbY/+F9Nq/HJSP1k9MCXczD6D79env7ev0058fY+IebNq0b8Ek/B0f7ChWDJ0wcN3PWjMjI8yoVUXuamth6KP1e1K2161Z9OWZ0zVrVfHy9WrVucfbcmfz8fGb+ozhWECuaRykH+hQW/bHjh7p0+UhkYw3SL2dSzsLCjFK/iYeH+6RJE27cuFaAXsUEj+7kMRjUGzestrURZmSmDB7yqaWVOdh/wcJ5evJhTu2wEf3bd2yo0ytgOlPOLF2bZIoiOztjydLfIqqGlw8OHDZ80IULZ8jkhgIKggh0BlBikszzfpkDxI7a18RVq9VJSUm7du0S2QgiqkYsW74YxjgIH2YXI3QajUgnxgCW/Dmwq0yaCyMXyBTSXn2629nbjRw9PDUtRaNTwYR/8DBq586tNWtVdXSyd3Zxql69art2bdpTdOhAjrZt29SrXycgwM/R0d7Cwvz777+7d++2Sk2+UAGgFJY/8/Mo/UB37d//Z736tW1tRQ4O9nXq1GrevFmTJo0CA/0tLCzKlSvn5ORQu3bNH374Lis700AHCa1WsW3rBjtbgVanjHlwr2q1yhgtatSMSElJhAx+/uWnDRpV0huU5KETzBAKXvCG4VIDvViSjTGvdp2aNraiatWrLl+xBPYNDB26kwJGEhSK530ebxfslzTQKDwKheL3P3ZiTurh6d6jZ5f0jGRoIBVNDoR3KbjEzwI5II5xnIiOiercrYONnahl62YgfbVWrScqrYYmy+Ti+9F37t69uW79qrAKIQKBAIwAVyCwFgoFdnY28DRv3vTEiWO3b9/Mzc3WarmXfCHbkrWPeLwCQHDXr1+9efP6vXt37t+/h8llQkJ8fHxsTMx9hNy9e/vAgX316tVt2qxJbPxjrZ5s24fBcef2NVsbG0igWis/eGgvrAcra8uZs75Xa+Tbd66pWiNYp5dDHiCVpdne1+vJz9FyheRx7IP2H7YRCAU+vp4zZ/5onGrTXzVKbJ2K5/0yB5An5WfySxRdiYcF/VSpzD9z9kSr1i28vD0jqlZauWrpo0cPNRSICcJl7M9lUQQIx1XMBhAT1HzlypU2bT9wcLbp3PXD+ITH5EteBWQFl63n0NVerUqlkMmkCQlxIIKHD2PWr183e/bMJUsW7dixLTY2FvMPlUrJbCIGWlkCY4nMw6OUA/IAk4KZBUxC0JtqtRJnNAAGhywpKTEhMR6zOpVGSXi/QJOakuDkaAdrpOCpHnLy55+/wyZwcnL6c++e2Pg7dRtUMBhU5J0NkKZSzfucwJNNSmkpa9asiogId/dwqxxe4eixgw8f3VcopDCGYNJwCd4ueN4vcwCBgkspXRMPtAd/eoNKqZKmpCauW7fq4wF9YJvUr19v+vTpCxcuTE5OZqSPBFwWRcB4Ge7hw4dnzZoVEBBQpUqlGT9MeRx3X09+i8Plp3SbNaIhE5RKzByoPfxw4ZfL88XiXGi4UkletIlQBmRrBE6NBdFiebwDMHYc6zW4tAcJIRrlgUQx6NRaFVnfN2gMevXxYwdtbUR0qofU5FmTyZMnmpub1a1Xu1fvTp27NWfrPNR8IY/vlk4Y744d+fkSzHgmTR7v7ePp6+eNe5ny9cRz505hNOQSvF28z7wPqYELUWOnPIqCNYuxbSCaTBVhgsXFPd6xY3vDRvWdnJ08PDxatmrZrXvXzZs35MvEiGM8EJn+TqCbOGl8125dKodX9vB0bdq08dmzp3Lzsuhrlp/haNodRPHxBxd+lgl0m2VIPf8IVmEe7xxodxftO/jJqTEQ5gebVup0akwd9+7bIxQJtRq2bAiZ0cXE3A2vUsFaYCEUWffp20VvQDSIjR5GP8uhtIK7U+aB5Z+a9uTosUO//7HTzl7k5OxQs1a1wYM/XbZskVarop+bxtSb7Gsit13IXWywpJm8SbyfvM8aDi4mk8zW4PF/geaCaFJRw/xa9vBRzNlzJ3v07CYQWlkLrGGkRFStUq16tdp1ajRr3qhd+w+at2hSo2b1mjWrOTo52NgKRTaCxUt+e/Q4Wq1RUkF/Bkx8WaewU6q6HOMbZwAsMo+yBkgFRI4KoGr2Tz9YWVtCOHCi02t0OqVKnf/jzG8FQmsz83LDRwwmPz6Rh3jJKjmX/l0Ahje1Wi6Ti5XK/MtXLnw2aICVtYWdvY2nl/snAwdgSCh4qtXqyAMuAFUQAqPKvFm8h7yPlkJ7Uf4i7YZGLI6Ge//AWszo1+s1Wq0yJfXJ48cxv/46p2q18EqVK1aoGIoBwN3DzdvHPSDAx8/ft2KlsGrVIjZuWo9o+bI8JKFU/jyQIZNm+NFBCKBdA71FGEf69OkBHmURTGdlMumCBb/6B/jCtP95zo+gQvJOY7oulJOT3f7DtqZmpuMnfKklb+skvP+u6TWMeTWdrBB+z8xMPX36OGbVgUGBoP7gkKCBn/aPun87MTGOED996SybBlF9ecN4/3gfhEIEBeZCdHTUjRvXKKfwvP8fAA2k0gY6ZrsOtBJJXmJifHz84+iYW8ePH9iyde3mzWsPHNhz+syxuLjHCQlx+fnkxTu0qdH4L+B9sDxoXUM/P408FQpZSkoSfUcbUWBaCmF/LjaPMgamoQ8eRA8aNHDkqGFfjvkcJPjn3l2geDokFBj0T0+cPNr/475r163ChBIiinBcYcnfEcD00Wi0Kgg/k3m1WpmUlHj9+tVFixa2aNncyckxMDCgfv36586dYz+GM01kjfNm8T7yfgH5TIc0P69N21ZfT/0K5IVA7iKPfwBkC0LG/EZpg+QhGC69TgMMKrVGJleI8/NzFAqxWg0JRiqihrBQtNxblF/Q2hg8YN307tOzd++effr27tW7e9u2bfr06dWnT5/09FQ2GODgYvMoe4D8wN5/8OB+RkZKdnY6LN/MzDS6K6YAZAmxUqrkMTFRYnEuhA2BWu07Zu/TOsM2ImoCXTHSOvwSifjWrZu7du1avHixn5/f0qVLEQcgesWv87wcwPuYHGmnfD1JILQePOQzHXnSj+f9/w8mhfAUlTP4EQ4Pm3iykYAd7JvpNBCm+l+2CU5JymdR8FSbk5OxYePawKAAgVAw47tvtm3bHBpKtvCD/ZEIphBcLjaPsgQiRlR+IANarQrKS97GU/iGSxYB4kmvkk0+IEqIZKGV8i6BMj5Z7YSawMN0CmCnUoobN26kpaXhlEWDC7BobxDvJ++fOn3Mz99HZCNYvmIxKIvQDo//AggcXIgpXGgdTgnIF85JW5JddHrisnYlVwpFE/KKU+YvCigz+uXosYM+vl5m5qaZWakymSQ+/rGjo0NERATTZ6g5F5vH2wPrLNqvz4CE0K58LvzNgwkMFTbIEZmskxfEFpaMcJzqDcws4OxfZqK8c/JCOZytUJG7MLoIhOKwU9wvW9YHmDaxcC6LN4R3m/dp43DtwjzArbvXGjapb25p6ujicOb8CcNTfp3nFYEm5XwvjX9KglkXjnETxphbmNWoHaEvUGMGkJD4mLyxp0KYWJxHNeIdNOHeZdDxmvsxjM23Hj16sGrVSnqsOHbskFIlyyAPb7+N9bdCyYHLDg40/JmQ9wlG1mK8j/4whgDwMzA/VRFuDoRTlsOr4d3mfdYcxCKgYyPGSTBIvwG9Bw76ODgs0MnF8dLV87oCfp2n5IHRNz7xUdPmDU3Myh0+ul//VA3zf9ToERaW5pUqVaIP6JKJLRebx1sBmcEVvjNAKhWPGzemZcsW4eGVBw/+7MMO7apVr9Kvf5+x4z7Pzs7iEvAoBoC7ACOhM05j6gA/PDhl4QiBn0WgSV8d7/w6D5sTMQ/aZcaMb3v37R4dc7d6jXAvH7e4+AcFvL1fCgDevxB5xtnNoZxZuW07N8UmPJj98w8urs4mpuUuXboIsWcizsXm8ZYAfiGkn5z8ZODAAQ4O9t7eXpcuRcLqj46+u3PXVjt7m2+mT1EoyHPUPIoJoC+A0Vd2dnazZs0aNGjQqFGDJk0aw9O4cSO4586dY9FY/NfXlHeb99kAyAB/QkJCSEjw8hWLJJLskJAADy/XJ08e6w0quizNoyShNSh//mWWmaWpjZ1N9ZrVIqpXdnZ1Kh/sf+3aZbq5kxg1PO+/ZTB7X6mUz537s52dbY0a1aKjozAS6PVatVqek5PRuEn9NWuX87+7FB8g9swFfanVaq1We+PGjbZtP7C0tBAIrYcPH9qnT6+goCB/f/+PPvpIIpGoVCoWGWA5vBre+XUegLVCUlJSly5dHBwcZnw7ddSooTY2Anc3t9SUBPoSD573Sxgqrax6zQihrWDWzz/cvndjzi+zGzWp7+hku3zFEmpycsuXXGwebwVsWR/zLXd316CgwOvXr4Lx2Z7aggKtSiX7asqEQ4f28upTfGC2DhN+kD7YTKNRDxnymYmpiYWlRVpaUkpKYlzco88++0woFM6fPx9xKNsRsBxeDe/877q4f7jA5MmTGzVqtGrVyh3bt6xetczZySEstLxcLjbw+zhLAaTyPIGNVZ36te7H3FHr5OTV5CcOlQ8OdHN3SUtLYbwPcLF5vBWA38HynTt/ZGJSbubMH43PE+FKARhJr7offSc9PYlXn+IDo2/QPQYAZsLCO3TYYDNzk7HjvtTT53txZGZmmJub16hR48GDBxoNJmSvu8T/jvM+2ShC3sO9cdMmDw+PM2fPyuQymUwskeR4eXn6B/hoyVdEeHv/bYNYI88uwe3YtcXMwmTGd98oVfl0h5UuMvJ8YGBguXLloqKikATRWFoebw0GulPezt7O0cn+yJGDGAMQhgMeDACgI61WpeMfeyxmQPC1Wkb6aHPD3Xu3I6pWMjEtFxv7iGoSKB6dojO3MLO0srx48QIbHrjEr4p3nfcNGp0mT5zX7+N+K1evyJdLtfRzBzBVvH28wqtUoO85gjTzglsCgAnDSB/+ho3qiWwE6zesRtegRxRK6bRpX1tZWZmYmCgUChYHc1iajsdbg27jxjXWAovQsOCrVy/RrSKE8XHo6LZOdnBxeRQDmLUD+QfQ1Fqt+tixowKhdYWKIXl5OZh7IRy9gp4SiixNTcudOXOaqdVr2knvNu8npyTsP/Dn0hWLatWtvmzlIpVaptUpbt26/ufe3R6e5BMHx44fzs3N5Hn/LQNCCWFV0096paenHz582N7eNiDQ78jRgxqNMicnc8OGtSEhwTD2O3bsyJY1qdzz3fRWoTdopk6bZG5h2rdf79zcLMoy4BTC/szDXC42j2IA1RQi+ZB/rVaD4XbmzB8sLMwXL/kNYwA4HyxPxwSNlbW5qZnJuXNnCkeC18K7zfsXIk9Xr1nF09vTx8+jVt2qWTkp+fLc0aNHeXl5mpmZWVtbNWvW5N6921xsHm8FjPThgtBjY2NHjRpVvnx5MzNTS0uLRo0bjho1ctCgT729vcLCQqdPn56QkICYABK+vjTz+I/Qtf+wtYWlyfARQ8E41O4k1M+s/gMH9t2/fw+nvNlUfGCyr9Ox9X3yFEVgoH/tOjViHpCWRy/gMvTo6rVIus5jfubMKTpGEHBZvBLebd7Pk2SfOX/ixMkjZ8+fuBB5RqGWavXKW7duHjly5BjFuXPnJBIxoxUebw2sweFKpdKrV6+ePHnyOMXp06cuXboUGXkBXXP58uWMjAyj+DKTn/l5vC3oPv9iuJm56ajRw8H1dGMV4xq9RqOqXbvWoUMH4Ofi8igGMKmHpgBqtWrdujXm5uYzZpCfwdgHKZm93/qD5haWpt26d05NTdZoNBgJEJ/L4pXwbvO+oUCvVCsUKrlKo1Rr6KfanpKndgGlUgmXLTVwsXm8LTASpyYMGESjUqnQEQA8OJXL5eyUSjsBIsPlEvN4W9BolWlpT6ysrfr175ufL6amPVlllsvzO3Ro7+npLhbn0oV+vmuKC/Stotx+HrR8ixbNMDNetmyxgb6PiE68CjBpdvdwNjUz/e77GbQ73oCyvOu8T14VhvGStQT5UmwRYxPNxjw0Lo+3B9bmRjZnHgAedhUoGg0uwPqLx1tDAflYgnbU6BFOzo7z5s09deoEjpMnT3z22UAbG+EPP3wPHaKbTHgUF6ABTDmgBXl52U5Ojm5urocO7dNoFcRw0muysjLbtm1rbm4WGhZy794d9gJnFp/L4pXwbvM+Dx48XgMgEH1CQuzIkSMqVaro7+8XEOBXs2bNSpUqVa1alb4N+HXXE3j8O0DflMfxX/fVlImWlhZBQYGRl87p9WpQ/9p1qz/5pL+Do0OFChVWr16tUMiNaxiv2S887/PgUUYBzgHva7Xq+PjYI0cOHTp0AMfJkydPnz59+fJlUBEDF5tHMYAZ75GRFzt27ODu7mpuYWItsK7foF7nzh3atmsbGOQvshHNmTv71KmTUqkUkdEdbLvza/YLz/s8eJRpgE0UCoVKpZJKJUol8QAgF7ivaVTy+L+A/Y5GjouL3b59659791y5ejHy0vmTJ4/fvn2DfSb21q0bubnZxt/D3sgiD8DzPg8eZRRgEB19PwzYhO0bAeA3AhEAFplHcQANjiEWnJ6fj0E3X69Xa7VK+lpyspdfo8EADLo3YAxmuyRYj7Ce4rJ4JfC8z4NH2QVIRK8nPyCCRyixcCsJCIdL6YVf5yle0J08aGQcOkOBhnxujIKGA+RnX/QF6Rs6PCMJDefX93nw4PGqAIHggClpIF9MJizDuB7u6/MLj38Ha2H2QwuM/YKnWrqrk1vMgcv8QFHqf/3BmOd9Hjx48Ch50M+E/OMoC+p/zvM64HmfBw8ePMoWeN7nwYMHj7IFnvd58ODBo2yB530ePHjwKFvgeZ8HDx48yhZ43ufBgwePsgWe93nw4MGjbIHnfR48ePAoW+B5nwcPHjzKFnje58GDB4+yBZ73efDgwaMs4enT/wF2+6YHl8uCUwAAAABJRU5ErkJggg=="" />"
3.
Which of the following statement(s) are/is correct?
I. In the process of metabolism, all organic biomolecules are constantly being broken down but not being built up through chemical reactions
II. A product of metabolism is called a metabolite, but not always
III. Metabolism is always known to build up new products
IV. Metabolism is the characteristic feature of non-living things
4.
The curve given below shows enzymatic activity with relation to three conditions (pH, temperature and substrate concentration)
What do the two axes (X and Y) represent?
5.
Choose the correct options
6.
After grinding a living tissue in trichloroacetic acid and then straining it, you would obtain two fractions : acid soluble pool and acid insoluble fraction. Acid insoluble fraction does not contains
7.
The free energy of a system, in a spontaneous reaction
8.
Inhibition of enzyme activity by a molecule, which reversibly modifies the structure of the active site of the enzyme is called
9.
Pentoses and hexoses are common
10.
Which one of the following is polysaccharide?